Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (English Edition) por Wes McKinney

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (English Edition) por Wes McKinney

Titulo del libro: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (English Edition)

Autor: Wes McKinney

Número de páginas: 550 páginas

Fecha de lanzamiento: September 25, 2017

Editor: O'Reilly Media

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (English Edition) de Wes McKinney está disponible para descargar en formato PDF y EPUB. Aquí puedes acceder a millones de libros. Todos los libros disponibles para leer en línea y descargar sin necesidad de pagar más.

Descargar PDF Leer on-line

Wes McKinney con Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (English Edition)

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process.

Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.

  • Use the IPython shell and Jupyter notebook for exploratory computing
  • Learn basic and advanced features in NumPy (Numerical Python)
  • Get started with data analysis tools in the pandas library
  • Use flexible tools to load, clean, transform, merge, and reshape data
  • Create informative visualizations with matplotlib
  • Apply the pandas groupby facility to slice, dice, and summarize datasets
  • Analyze and manipulate regular and irregular time series data
  • Learn how to solve real-world data analysis problems with thorough, detailed examples